estimate.jl
Public functions
QuantumACES.NoiseError
— TypeNoiseError
Noise estimate error data structure containing normalised root-mean-square errors (NRMSE) for a NoiseEstimate
.
Fields
gls_nrmse::Float64
: Generalised least squares normalised root-mean-square error.gls_proj_nrmse::Float64
: Generalised least squares projected normalised root-mean-square error.gls_marginal_nrmse::Float64
: Generalised least squares marginal normalised root-mean-square error.gls_proj_marginal_nrmse::Float64
: Generalised least squares projected marginal normalised root-mean-square error.gls_relative_nrmse::Float64
: Generalised least squares relative normalised root-mean-square error.gls_proj_relative_nrmse::Float64
: Generalised least squares projected relative normalised root-mean-square error.wls_nrmse::Float64
: Weighted least squares normalised root-mean-square error.wls_proj_nrmse::Float64
: Weighted least squares projected normalised root-mean-square error.wls_marginal_nrmse::Float64
: Weighted least squares marginal normalised root-mean-square error.wls_proj_marginal_nrmse::Float64
: Weighted least squares projected marginal normalised root-mean-square error.wls_relative_nrmse::Float64
: Weighted least squares relative normalised root-mean-square error.wls_proj_relative_nrmse::Float64
: Weighted least squares projected relative normalised root-mean-square error.ols_nrmse::Float64
: Ordinary least squares normalised root-mean-square error.ols_proj_nrmse::Float64
: Ordinary least squares projected normalised root-mean-square error.ols_marginal_nrmse::Float64
: Ordinary least squares marginal normalised root-mean-square error.ols_proj_marginal_nrmse::Float64
: Ordinary least squares projected marginal normalised root-mean-square error.ols_relative_nrmse::Float64
: Ordinary least squares relative normalised root-mean-square error.ols_proj_relative_nrmse::Float64
: Ordinary least squares projected relative normalised root-mean-square error.
QuantumACES.NoiseEstimate
— TypeNoiseEstimate
Noise estimate data structure.
Fields
eigenvalues_experiment_ensemble::Vector{Vector{Vector{Float64}}}
: Circuit eigenvalue estimates for each tuple and circuit eigenvalue.covariance_experiment_ensemble::Vector{Vector{Vector{Float64}}}
: Covariance circuit eigenvalue estimates for each tuple and covariance circuit eigenvalue.shot_budget::Int
: Shot budget for the (potentially randomised) experimental ensemble.gls_unproj_gate_eigenvalues::Vector{Float64}
: Generalised least squares unprojected gate eigenvalues.gls_gate_eigenvalues::Vector{Float64}
: Generalised least squares projected gate eigenvalues.gls_unproj_gate_probabilities::Dict{Gate, Vector{Float64}}
: Generalised least squares unprojected gate error probabilities.gls_gate_probabilities::Dict{Gate, Vector{Float64}}
: Generalised least squares projected gate error probabilities.gls_unproj_marginal_gate_eigenvalues::Vector{Float64}
: Generalised least squares unprojected marginal gate eigenvalues.gls_marginal_gate_eigenvalues::Vector{Float64}
: Generalised least squares projected marginal gate eigenvalues.gls_unproj_marginal_gate_probabilities::Dict{Gate, Vector{Float64}}
: Generalised least squares unprojected marginal gate error probabilities.gls_marginal_gate_probabilities::Dict{Gate, Vector{Float64}}
: Generalised least squares projected marginal gate error probabilities.gls_unproj_relative_gate_eigenvalues::Vector{Float64}
: Generalised least squares unprojected relative gate eigenvalues.gls_relative_gate_eigenvalues::Vector{Float64}
: Generalised least squares projected relative gate eigenvalues.wls_unproj_gate_eigenvalues::Vector{Float64}
: Weighted least squares unprojected gate eigenvalues.wls_gate_eigenvalues::Vector{Float64}
: Weighted least squares projected gate eigenvalues.wls_unproj_gate_probabilities::Dict{Gate, Vector{Float64}}
: Weighted least squares unprojected gate error probabilities.wls_gate_probabilities::Dict{Gate, Vector{Float64}}
: Weighted least squares projected gate error probabilities.wls_unproj_marginal_gate_eigenvalues::Vector{Float64}
: Weighted least squares unprojected marginal gate eigenvalues.wls_marginal_gate_eigenvalues::Vector{Float64}
: Weighted least squares projected marginal gate eigenvalues.wls_unproj_marginal_gate_probabilities::Dict{Gate, Vector{Float64}}
: Weighted least squares unprojected marginal gate error probabilities.wls_marginal_gate_probabilities::Dict{Gate, Vector{Float64}}
: Weighted least squares projected marginal gate error probabilities.wls_unproj_relative_gate_eigenvalues::Vector{Float64}
: Weighted least squares unprojected relative gate eigenvalues.wls_relative_gate_eigenvalues::Vector{Float64}
: Weighted least squares projected relative gate eigenvalues.ols_unproj_gate_eigenvalues::Vector{Float64}
: Ordinary least squares unprojected gate eigenvalues.ols_gate_eigenvalues::Vector{Float64}
: Ordinary least squares projected gate eigenvalues.ols_unproj_gate_probabilities::Dict{Gate, Vector{Float64}}
: Ordinary least squares unprojected gate error probabilities.ols_gate_probabilities::Dict{Gate, Vector{Float64}}
: Ordinary least squares projected gate error probabilities.ols_unproj_marginal_gate_eigenvalues::Vector{Float64}
: Ordinary least squares unprojected marginal gate eigenvalues.ols_marginal_gate_eigenvalues::Vector{Float64}
: Ordinary least squares projected marginal gate eigenvalues.ols_unproj_marginal_gate_probabilities::Dict{Gate, Vector{Float64}}
: Ordinary least squares unprojected marginal gate error probabilities.ols_marginal_gate_probabilities::Dict{Gate, Vector{Float64}}
: Ordinary least squares projected marginal gate error probabilities.ols_unproj_relative_gate_eigenvalues::Vector{Float64}
: Ordinary least squares unprojected relative gate eigenvalues.ols_relative_gate_eigenvalues::Vector{Float64}
: Ordinary least squares projected relative gate eigenvalues.
QuantumACES.NoiseScore
— TypeNoiseScore
Noise estimate error z-score data structure, containing the z-scores for a NoiseError
with respect to some predicted Merit
.
Fields
gls_z_score::Float64
: Generalised least squares z-score.gls_proj_z_score::Float64
: Generalised least squares projected z-score.gls_marginal_z_score::Float64
: Generalised least squares marginal z-score.gls_proj_marginal_z_score::Float64
: Generalised least squares projected marginal z-score.gls_relative_z_score::Float64
: Generalised least squares relative z-score.gls_proj_relative_z_score::Float64
: Generalised least squares projected relative z-score.wls_z_score::Float64
: Weighted least squares z-score.wls_proj_z_score::Float64
: Weighted least squares projected z-score.wls_marginal_z_score::Float64
: Weighted least squares marginal z-score.wls_proj_marginal_z_score::Float64
: Weighted least squares projected marginal z-score.wls_relative_z_score::Float64
: Weighted least squares relative z-score.wls_proj_relative_z_score::Float64
: Weighted least squares projected relative z-score.ols_z_score::Float64
: Ordinary least squares z-score.ols_proj_z_score::Float64
: Ordinary least squares projected z-score.ols_marginal_z_score::Float64
: Ordinary least squares marginal z-score.ols_proj_marginal_z_score::Float64
: Ordinary least squares projected marginal z-score.ols_relative_z_score::Float64
: Ordinary least squares relative z-score.ols_proj_relative_z_score::Float64
: Ordinary least squares projected relative z-score.
QuantumACES.calc_covariance
— Methodcalc_covariance(d::Design, noise_est::NoiseEstimate; weight_time::Bool = false)
calc_covariance(d_rand::RandDesign, noise_est::NoiseEstimate; weight_time::Bool = false)
Returns the estimated covariance matrix for a noise estimate noise_est
associated with the design d
or randomised design d_rand
, weighting the shot budget by the time factor if weight_time
is true
.
QuantumACES.estimate_gate_noise
— Methodestimate_gate_noise(d::Design, noise_est::NoiseEstimate; kwargs...)
estimate_gate_noise(d_rand::RandDesign, noise_est::NoiseEstimate; kwargs...)
estimate_gate_noise(d::Design, est_eigenvalues_experiment_ensemble::Vector{Vector{Vector{Float64}}}, est_covariance_experiment_ensemble::Vector{Vector{Vector{Float64}}}, shot_budget::Int; kwargs...)
estimate_gate_noise(d_rand::RandDesign, est_eigenvalues_experiment_ensemble::Vector{Vector{Vector{Float64}}}, est_covariance_experiment_ensemble::Vector{Vector{Vector{Float64}}}; kwargs...)
Returns a NoiseEstimate
of the gate noise for the design d
or randomised design d_rand
derived from estimated circuit eigenvalues, either already contained in a noise estimate noise_est
, or as estimated circuit eigenvalues est_eigenvalues_experiment_ensemble
and covariance circuit eigenvalues est_covariance_experiment_ensemble
, with shot budget shot_budget
.
Arguments
d::Design
: Experimental design.d_rand::RandDesign
: Randomised experimental design.noise_est::NoiseEstimate
: Noise estimate.est_eigenvalues_experiment_ensemble::Vector{Vector{Vector{Float64}}}
: Estimated ensemble of circuit eigenvalues.est_covariance_experiment_ensemble::Vector{Vector{Vector{Float64}}}
: Estimated ensemble of covariance circuit eigenvalues.shot_budget::Int
: Noise estimate shot budget.
Keword arguments
min_eigenvalue::Float64 = 0.1
: The minimum eigenvalue threshold for clipping.clip_warning::Bool = true
: Whether to warn if eigenvalues are clipped.N_warn_split::Integer = 5 * 10^3
: The number of gate eigenvalues above which to warn about splitting.split::Bool = (d.c.gate_data.N < N_warn_split ? false : true)
: Whether to split the gate eigenvalue projection across gates or simultaneously project all gate eigenvalues.split_warning::Bool = true
: Whether to warn if the gate eigenvalue projection is not split.precision::Real = 1e-8
: The solver precision for the gate eigenvalue projection.
QuantumACES.get_aic
— Methodget_aic(d::Design, noise_est::NoiseEstimate; projected::Bool = false)
get_aic(d_rand::RandDesign, noise_est::NoiseEstimate; projected::Bool = false)
Returns the Akaike information criterion (AIC) corresponding to the noise estimate noise_est
, given the design d
or alternatively the randomised design d_rand
, calculating with the projected gate eigenvalues if projected
is true
.
QuantumACES.get_bic
— Methodget_bic(d::Design, noise_est::NoiseEstimate; projected::Bool = false)
get_bic(d_rand::RandDesign, noise_est::NoiseEstimate; projected::Bool = false)
Returns the Bayesian information criterion (BIC) corresponding to the noise estimate noise_est
, given the design d
or alternatively the randomised design d_rand
, calculating with the projected gate eigenvalues if projected
is true
.
QuantumACES.get_eigenvalues
— Methodget_eigenvalues(noise_est::NoiseEstimate)
Returns the estimated circuit eigenvalues of noise estimate noise_est
.
QuantumACES.get_model_violation
— Methodget_model_violation(d::Design, noise_est::NoiseEstimate; projected::Bool = false)
get_model_violation(d_rand::RandDesign, noise_est::NoiseEstimate; projected::Bool = false)
get_model_violation(d::Design, noise_est_vector::Vector{NoiseEstimate}; projected::Bool = false)
get_model_violation(d::Design, noise_est_matrix::Matrix{NoiseEstimate}; projected::Bool = false)
Returns the noise model violation z-score for the generalised residual sum of squares corresponding to the noise estimate noise_est
, given the design d
or alternatively the randomised design d_rand
, calculating with the projected gate eigenvalues if projected
is true
.
QuantumACES.get_noise_error
— Methodget_noise_error(d::Design, noise_est::NoiseEstimate)
get_noise_error(d_rand::RandDesign, noise_est::NoiseEstimate)
Returns a NoiseError
object containing the normalised root-mean-square errors (NRMSEs) for the gate noise estimates in noise_est
and the true gate eigenvalues for the design d
, or alternatively the randomised design d_rand
.
QuantumACES.get_noise_score
— Methodget_noise_score(noise_error::NoiseError, merit::Merit)
get_noise_score(noise_error_vector::Vector{NoiseError}, merit::Merit)
get_noise_score(noise_error_matrix::Matrix{NoiseError}, merit::Merit)
Returns a NoiseScore
object containing the z-scores for the supplied normalised root-mean-square error (NRMSE) data in noise_error
given the merit merit
.
QuantumACES.get_rss
— Methodget_rss(d::Design, noise_est::NoiseEstimate; projected::Bool = false)
get_rss(d_rand::RandDesign, noise_est::NoiseEstimate; projected::Bool = false)
Returns the generalised residual sum of squares corresponding to the noise estimate noise_est
, given the design d
or alternatively the randomised design d_rand
, calculating with the projected gate eigenvalues if projected
is true
.
QuantumACES.is_score_expected
— Methodis_score_expected(noise_score::NoiseScore, z_score_cutoff::Real)
is_score_expected(noise_score::NoiseScore, z_score_cutoff_lower::Real, z_score_cutoff_upper::Real)
Returns a Boolean indicating whether the z-scores in noise_score
are within the specified cutoffs, and projection improves the z-scores as expected.
Private functions
QuantumACES.estimate_experiment
— Methodestimate_experiment(counts::Union{Matrix{UInt8}, Dict{String, Int}}, experiment_meas_indices::Vector{Vector{Int}}, experiment_pauli_signs::Vector{Bool}, shots_value::Integer)
Returns the sample average estimator contributions estimated from the counts counts
for the circuit eigenvalues measured at experiment_meas_indices
whose Pauli mappings have signs experiment_pauli_signs
, across shots_value
samples.
QuantumACES.estimate_gate_eigenvalues
— Methodestimate_gate_eigenvalues(design_matrix::SparseMatrixCSC{Float64, Int}, est_covariance_log_inv_factor::SparseMatrixCSC{Float64, Int}, est_eigenvalues::Vector{Float64}; constrain::Bool = false)
estimate_gate_eigenvalues(design_matrix::SparseMatrixCSC{Float64, Int}, est_eigenvalues::Vector{Float64}; constrain::Bool = false)
Returns the gate eigenvalues estimated from the estimated circuit eigenvalues est_eigenvalues
by least squares inversion with the design matrix design_matrix
, both weighted by the factor est_covariance_log_inv_factor
if appropriate, constraining the gate eigenvalues to be at most 1 if constrain
is true.
QuantumACES.full_project_gate_eigenvalues
— Methodfull_project_gate_eigenvalues(est_unproj_gate_eigenvalues::Vector{Float64}, est_precision_matrix::SparseMatrixCSC{Float64, Int64}, gate_data::GateData; precision::Real = 1e-8, diagnostics::Bool = false)
Returns the projection into the probability simplex of the gate eigenvalues est_unproj_gate_eigenvalues
and the corresponding gate probabilities, projecting in the Mahalanobis distance using the precision matrix est_precision_matrix
, with corresponding gate data gate_data
. The solver precision is controlled by precision
, and solver diagnostics are printed if diagnostics
is true
.
QuantumACES.get_clipped_indices
— Methodget_clipped_indices(est_eigenvalues::Vector{Float64}; min_eigenvalue::Real = 0.1, warning::Bool = true)
Returns clipped indices for the estimated circuit eigenvalues est_eigenvalues
that not less than min_eigenvalue
, warning if eigenvalues are clipped and warning
is true.
QuantumACES.get_clipped_mapping_lengths
— Methodget_clipped_mapping_lengths(mapping_lengths::Vector{Int}, clipped_indices::Vector{Int})
Returns updated mapping_lengths
given the clipped indices clipped_indices
.
QuantumACES.get_covariance_experiment_data
— Methodget_covariance_experiment_data(d::Design, covariance_keys_ensemble::Vector{Vector{CartesianIndex{2}}}, covariance_key_indices_ensemble::Vector{Dict{CartesianIndex{2}, Int}}; qiskit_qubit_map::Union{Vector{Int}, Nothing} = nothing)
Returns the covariance experiment data for the design d
, including the covariance experiment ensemble, covariance measurement indices ensemble, and covariance Pauli sign ensemble.
QuantumACES.get_experiment_data
— Methodget_experiment_data(d::Design; qiskit_qubit_map::Union{Vector{Int}, Nothing} = nothing)
Returns the experiment data for the design d
, including the experiment ensemble, measurement indices ensemble, and Pauli sign ensemble.
QuantumACES.pauli_estimate
— Methodpauli_estimate(stim_counts::Matrix{UInt8}, pauli_meas_indices::Vector{Int}, shots_value::Integer)
pauli_estimate(qiskit_counts::Dict{String,Int}, pauli_meas_indices::Vector{Int}, shots_value::Integer)
Returns the sample average from the counts stim_counts
or qiskit_counts
of the Pauli operator measured at the indices pauli_meas_indices
across shots_value
samples.
Note that parse_qiskit_dict
parses Qiskit formatted counts into Stim formatted counts.
QuantumACES.simple_project_gate_eigenvalues
— Methodsimple_project_gate_eigenvalues(est_unproj_gate_eigenvalues::Vector{Float64}, gate_data::GateData)
Returns the projection into the probability simplex of the gate eigenvalues est_unproj_gate_eigenvalues
and the corresponding gate probabilities, projecting in the Euclidean distance with corresponding gate data gate_data
.
QuantumACES.split_project_gate_eigenvalues
— Methodsplit_project_gate_eigenvalues(est_unproj_gate_eigenvalues::Vector{Float64}, est_precision_matrix::SparseMatrixCSC{Float64, Int64}, gate_data::GateData; precision::Real = 1e-8, diagnostics::Bool = false)
Returns the projection into the probability simplex of the gate eigenvalues est_unproj_gate_eigenvalues
and the corresponding gate probabilities, projecting separately for each gate in the Mahalanobis distance using the relevant slice of the precision matrix est_precision_matrix
, with corresponding gate data gate_data
. The solver precision is controlled by precision
, and solver diagnostics are printed if diagnostics
is true
.