
Improving error suppression with

noise-aware decoding

arXiv:2502.21044

Evan T. Hockings Andrew C. Doherty Robin Harper

The University of Sydney

March 26, 2025

https://arxiv.org/abs/2502.21044
https://evanhockings.github.io/

The backlog problem

• Fault tolerance is required for useful quantum
computation.

• Real-time decoding is essential: syndrome data must be
processed before implementing a non-Clifford operation.

• Seek techniques for improving decoder performance at
scale without increasing computational cost.

• We introduce one such technique, noise-aware decoding,
which uses noise estimates to calibrate decoders, and
investigate it through numerical simulations.

1

A review of quantum error

correction

Pauli operators

• The single-qubit Pauli operators are Hermitian, unitary,
and hence involutions, span C2×2, and are given

I =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
, Y =

[
0 −i
i 0

]
.

• The n-qubit Pauli operators are n-fold tensor products.

• They form an orthogonal basis for Cd×d, where d = 2n,
under the natural trace or Hilbert-Schmidt inner product

⟨A,B⟩ = tr
(
A†B

)
.

• We can express n-qubit errors as a linear combination of
n-qubit Pauli errors, enabling quantum error correction.

2

The Pauli group

• Index n-qubit Pauli operators by bit strings in Z2n
2 ,

a = (a(x),a(z)) = (a
(x)
1 , . . . , a

(x)
n , a

(z)
1 , . . . , a

(z)
n), to write

Pa =
n⊗

j=1

ia
(x)
j a

(z)
j Xa

(x)
j Za

(z)
j .

• With phases ⟨i⟩ = {±1,±i}, these form the n-qubit Pauli
group Pn under matrix multiplication.

• The Abelianisation Pn = Pn/⟨i⟩, the Pauli quotient group,
is isomorphic to Z2n

2 as, for Pa, Pb ∈ Pn,

PaPb = Pa+b.

• For convenience, will refer to a ∈ Pn.

3

Pauli group commutation

• Define the commutation relation of Pauli operators with
the symplectic bilinear form ω : Pn × Pn → Z2,

ω(a, b) = a(x) · b(z) + a(z) · b(x),

PaPb = (−1)ω(a,b)PbPa.

• ω is alternating, ω(a,a) = 0 for all a, non-degenerate,
ω(a, b) = 0 for all b implies a = 0, and symmetric as the
field is Z2.

• Then (Pn, ω) is a symplectic vector space.

• It is convenient to play a little fast and loose with signs,
though a more exacting treatment is possible.

4

The Clifford group

• The Clifford group is sometimes defined as the group of
unitaries U that normalise the Pauli group Pn, namely for
any Pa there exists some Pb such that UPaU

† = Pb, but
this has infinite centre with phases eiθ.

• Instead define the Clifford group Cn as the group
generated by the Hadamard, phase, and controlled-X
gates, written Hj , Sj , and Ci(Xj), for control qubits i and
target qubits j ̸= i, where

H1 =
1√
2

[
1 1
1 −1

]
, S1 =

[
1 0
0 i

]
, C1(X2) =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,
• This yields 8 phases ⟨η⟩, where η =

√
i = (1 + i)/

√
2.

5

Symplectic representation of the Clifford group

• The Clifford quotient group Cn = Cn/⟨η,Pn⟩ is
isomorphic to the symplectic group Sp(2n,Z2), linear
transformations on Z2n

2 that preserve ω, that is, for all
M ∈ Cn and a, b ∈ Pn, ω(Ma,Mb) = ω(a, b).

• This symplectic representation of the Clifford group
enables efficient simulation of stabiliser circuits with
Clifford gates and computational basis measurements.

• Track states by their stabiliser group S ⊂ Pn such that
ω(a, b) = 0 for all a, b ∈ S.

• A state |ψ⟩ is stabilised by S if Pa|ψ⟩ = |ψ⟩ for all Pa ∈ S,
and uniquely specified by S if it is maximal, or
n-dimensional.

6

Pauli channels

• Model noise with a Pauli channel, which can be written

E(ρ) =
∑
a∈Pn

paPaρPa.

• Learn E by estimating the 4n Pauli error probabilities pa
that form a probability distribution over Pauli errors.

• The Pauli operators are the eigenvectors of E

E(Pb) =
∑
a∈Pn

paPaPbPa =

(∑
a∈Pn

(−1)ω(a,b)pa

)
Pb = λbPb.

• The Pauli channel eigenvalues λb are related to the error
probabilities pa by a Walsh-Hadamard transform ordered
by ω, and more convenient to estimate.

7

Pauli channel estimation

• Consider the eigenbasis |ψa
s ⟩ of Pa, sign configurations of

tensor products of single-qubit Pauli eigenstates indexed
by the length n bit string s.

• Let s be the parity of s, then Pa|ψa
s ⟩ = (−1)s|ψa

s ⟩.

• Suppose we prepare eigenstates |ψa
s ⟩ of Pa uniformly at

random, apply E m times, and measure the expectation
value of Pa, then

1

2n

∑
s∈Zn

2

(−1)s tr
(
PaEm(|ψa

s ⟩⟨ψa
s |)
)
=

1

2n
tr
(
PaEm(Pa)

)
= λma .

• This directly estimates λma and is the fundamental
strategy underlying Pauli channel estimation techniques.

8

Pauli twirling

• Consider the Pauli twirl of a quantum channel L,

LPn

(ρ) =
1

4n

∑
a∈Pn

∑
k

(
PaLkP

†
a

)
ρ
(
PaLkP

†
a

)†
.

• Express Lk in terms of Pb with real coefficients lkb as

Lk =
1

2n

∑
b∈Pn

tr
(
P †
bLk

)
Pb =

∑
b∈Pn

lkbPb.

• Calculate to find LPn
(ρ) is a Pauli channel with Pauli

error probabilities

pb =
∑
k

l2kb.

• Hence Pauli frame randomisation and the randomised
compiling protocol tailor quantum noise into Pauli noise.

9

Symplectic vector spaces

• Introduce stabiliser codes by first sketching results about
symplectic vector spaces.

• Let V be a 2n-dimensional vector space over the field F ,
and let ω : V × V → F be a symplectic bilinear form.

• The symplectic complement of a subspace W ⊆ V is

W ω = {v ∈ V : ∀w ∈ W,ω(v, w) = 0}.

• Then W is isotropic if W ⊆ W ω, coisotropic if W ω ⊆ W ,
and Lagrangian if W = W ω.

• The symplectic complement is the centraliser C(S) of a
subspace S ⊆ Pn, stabiliser groups are isotropic, and
maximal stabiliser groups are Lagrangian.

10

The rank-nullity theorem

• The dual map ϕ : V → V ∗ acts as ϕ(v)w = ω(w, v).

• For any subspace W ⊆ V , consider ϕ(W) : V → W ∗, where
ϕ(W)(v)w = ω(w, v) for all w ∈ W .

• Since ϕ(W) is surjective with kernel W ω, the rank-nullity
theorem yields

dimW + dimW ω = dimV = 2n.

• This implies W ωω = W , so W is isotropic if and only if
W ω is coisotropic.

• Also isotropic subspaces have dimension at most n, and
Lagrangian subspaces have dimension exactly n.

11

Symplectic bases

• Consider the basis {u1, . . . , un} of a Lagrangian subspace
L.

• This can be extended with {v1, . . . , vn} to obtain a
symplectic basis for V with commutation properties

ω(ui, uj) = ω(vi, vj) = 0, ω(ui, vj) = δij, ∀i, j ∈ [n].

• This follows from a symplectic Gram-Schmidt procedure,
though the vi are not unique.

• It is more efficient for stabiliser circuit simulations to
track the entire symplectic basis.

• The ui and vi are called stabiliser and destabiliser
generators, respectively.

12

Symplectic reductions

• Let W ⊆ V be a coisotropic subspace and consider
W̄ = W/W ω, the symplectic reduction of V by W .

• Then ω̄([v], [w]) = ω(v, w) is a well-defined symplectic
form on W̄ , where [w] = w +W ω ∈ W̄ .

• Hence (W̄ , ω̄) is a symplectic vector space whose
symplectic form ω̄ is inherited from ω on V .

• Also, let L ⊆ W be a Lagrangian subspace of V , then
L̄ = L/W ω is a Lagrangian subspace of W̄ .

• Stabiliser codes are symplectic reductions of the Pauli
group, which behave like smaller, redundantly encoded
Pauli groups whose elements are the logical operators.

13

Stabiliser codes

• A stabiliser code encoding k logical qubits in n physical
qubits is defined by a generating set {s1, . . . , sn} for a
maximal stabiliser group, extended to a symplectic basis
by {r1, . . . , rn}.

• S = ⟨s1, . . . , sn−k⟩ is generated by n− k stabiliser
generators.

• LS = ⟨sn−k+1, . . . , sn⟩ = ⟨Z̄1, . . . , Z̄k⟩ is generated by k
logical stabiliser generators.

• R = ⟨r1, . . . , rn−k⟩ is generated by n− k destabiliser
generators.

• LR = ⟨rn−k+1, . . . , rn⟩ = ⟨X̄1, . . . , X̄k⟩ is generated by k
logical destabiliser generators.

14

Stabiliser code distance

• Define the logical group L = LS ⊕ LR and partition the
Pauli group as

Pn = S ⊕ L⊕R.

• Then any a ∈ Pn can be written as a = aS + aL + aR for
aS ∈ S, aL ∈ L, and aR ∈ R.

• Also C(S) = S ⊕ L, and logical operators are elements of
the symplectic reduction C(S)/S ∼= L.

• The distance of the code is the minimum weight
non-trivial logical operator

d = min
a∈C(S)\S

|a|.

15

Stabiliser codes under noise

• Suppose the n physical qubits are acted on by a Pauli
channel E and some physical error e ∈ Pn occurs, where
e = eS + eL + eR.

• Measure the stabiliser generators sj for j ∈ [n− k] with
outcomes (−1)sj for sj ∈ Z2, giving the error syndrome
eR = s1r1 + · · ·+ sn−krn−k ∈ R.

• Given E and eR, the problem of decoding the code is
finding a recovery operator f ∈ Pn such that f = e+ s′

for some s′ ∈ S.

• If the decoder succeeds, applying f corrects any logical
errors, else the logical error specified by e+ f occurs.

16

Quantum error correction conditions

• The quantum error correction conditions on the error set
E ⊆ Pn guarantee decoding success.

• For any error e ∈ E, choose any recovery operator f ∈ E
with appropriate error syndrome fR = eR, then
e+ f = s′ + l′ for some s′ ∈ S and l′ ∈ L.

• Decoding succeeds if l′ = 0, which is ensured by
e+ f /∈ C(S) \ S.

• This implies decoding always succeeds if errors in E have
weight at most ⌊(d− 1)/2⌋.

17

Decoding strategies

• Maximum-likelihood decoding chooses the f ∈ l′ + r + S
with most probable l′ ∈ L according to E given r ∈ R,
that is,

l′ = argmax
m∈L

∑
t∈S

pt+m+r.

• Minimum-weight decoding chooses the most probable
s′ + l′ ∈ S ⊕ L according to E given r ∈ R, that is,

s′ + l′ = arg max
t∈S,m∈L

pt+m+r.

• Decoder performance relies on knowledge of E .

• We show that calibrating this decoder prior improves
decoding performance.

18

The circuit-level picture of

quantum error correction

and fault tolerance

The ‘circuit-forward’ approach

• Google has demonstrated the surface code with many
different syndrome extraction circuits.1

• I claim this reflects an emerging ‘circuit-forward’ paradigm
focusing on the actual circuits run on the quantum device.

• This contrasts with a ‘code-forward’ paradigm that
regards the design of quantum error correction circuits
more as an implementation detail.

• Under the ‘circuit-forward’ paradigm, it becomes natural
to co-design quantum error correcting codes, decoders,
fault-tolerant circuits, and quantum devices.

1Google Quantum AI. Demonstrating dynamic surface codes. arXiv:2412.14360.
19

https://arxiv.org/abs/2412.14360

Open-source tools

• The ‘circuit-forward’ paradigm is powered by open-source
packages such as Stim and PyMatching by Craig Gidney
and Oscar Higgott—perhaps not coincidentally at Google.

• These enable stabiliser circuit simulation and decoding of
quantum error correction circuits, respectively.

• But both simulation and decoding must be informed by a
circuit-level Pauli noise model!

• My open-source package QuantumACES.jl enables the
estimation of circuit-level Pauli noise at scale, which can
inform simulation and decoding.

• This talk focuses on the latter.

20

https://github.com/quantumlib/Stim
https://github.com/oscarhiggott/PyMatching
https://github.com/evanhockings/QuantumACES.jl

The detector formalism

• Stim frames quantum error correction in terms of
detectors, parities of measurement outcomes in a quantum
error correction circuit that are deterministic absent noise.

• Also, logical observables are parities of measurement
outcomes that correspond to logical Pauli operators.

• Errors flip detectors and logical observables.

• Given a circuit-level Pauli noise model, Stim constructs a
detector error model describing the error probabilities of all
possible combinations of detectors and logical observables.

• PyMatching uses the detector error model to decode the
logical observables given the outcomes of the detectors.

21

Memory experiments

• Consider a Z (X) memory experiment.

• In the first round of syndrome extraction, the detectors are
the Z-type (X-type) stabiliser measure qubit outcomes.

• In subsequent rounds, the detectors are both the Z- and
X-type stabiliser measure qubit outcomes.

• In the final round, the detectors are parities of the Z-type
(X-type) stabiliser measure qubit outcomes alongside the
associated data qubit outcomes.

• The logical observable is the parity of data qubits in any
logical Z (X) operator.

22

Noise-aware decoding

Calibrating decoders

• We use averaged circuit eigenvalue sampling (ACES) to
characterise circuit-level Pauli noise in surface code
syndrome extraction circuits,2 implemented with
QuantumACES.jl.

• Calibrating the PyMatching detector error model with
ACES noise estimates enables noise-aware decoding.

• Below threshold, the logical error per round is
approximately ε ∝ Λ−d/2.

• Noise-aware decoding increases the error suppression
factor Λ, exponentially reducing logical error rates.

2Hockings, Doherty, Harper. Scalable noise characterization of syndrome-extraction

circuits with averaged circuit eigenvalue sampling. PRX Quantum 6, 010334, 2025.
23

https://github.com/evanhockings/QuantumACES.jl
https://doi.org/10.1103/PRXQuantum.6.010334

Noise-aware decoding

3 5 7 9 11 13

88

91

94

97

100

Distance

R
el
a
ti
v
e
lo
g
ic
a
l
er
ro
r
p
er

ro
u
n
d
(%

)

Tuned depolarising

ACES: 106 shots

ACES: 107 shots

True noise

24

Noise-aware decoding at scale

• Trends are consistent with memory results at distance 25.

Decoder performance for memory experiments with 25 rounds, dividing

107 shots evenly between Z and X memory types. Diagonal elements

count decoding failures for each prior. Off-diagonal elements count the

number of shots where the decoder for the row succeeded and the

decoder for the column failed.

Succ.

Fail. Fail. True ACES:107 ACES:106 Depolarising

True 5507 227 619 3005

ACES:107 195 5539 564 2997

ACES:106 495 472 5631 2994

Depolarising 1314 1338 1427 7198

25

Conclusions

• Noise-aware decoding can substantially reduce logical
error rates and qubit overheads, with improvements that
increase exponentially with scale.

• ACES noise estimates enable near-optimal decoding
compared to calibration with the true noise model.

• In superconducting quantum computers, decoders could
be calibrated with ACES experiments performed and
processed in seconds!

• Now working to implement these methods on real
quantum devices.

26

	A review of quantum error correction
	The circuit-level picture of quantum error correction and fault tolerance
	Noise-aware decoding

