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The backlog problem

e Fault tolerance is required for useful quantum
computation.

e Real-time decoding is essential: syndrome data must be
processed before implementing a non-Clifford operation.

e Seek techniques for improving decoder performance at
scale without increasing computational cost.

e We introduce one such technique, noise-aware decoding,
which uses noise estimates to calibrate decoders, and
investigate it through numerical simulations.



A review of quantum error
correction



Pauli operators

e The single-qubit Pauli operators are Hermitian, unitary,
and hence involutions, span C?*2, and are given
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e The n-qubit Pauli operators are n-fold tensor products.

e They form an orthogonal basis for C4*¢, where d = 2",
under the natural trace or Hilbert-Schmidt inner product

(A, B) = tr (A'B).

e We can express n-qubit errors as a linear combination of
n-qubit Pauli errors, enabling quantum error correction.



The Pauli group

e Index n-qubit Pauli operators by bit strings in Z2",

a=(a®,a®) =@, ...,a d?, ... d?), to write
P, =i x5” 707
=1

e With phases (i) = {£1, i}, these form the n-qubit Pauli
group P™ under matrix multiplication.

e The Abelianisation P" = P"/(i), the Pauli quotient group,
is isomorphic to Z3" as, for P,, P, € P™,

PyPy = Pors.

e For convenience, will refer to a € P".



Pauli group commutation

e Define the commutation relation of Pauli operators with
the symplectic bilinear form w: P™ X P™ — Z,,

P,Py = (-1)*@®p,P,.

e w is alternating, w(a,a) = 0 for all a, non-degenerate,
w(a,b) =0 for all b implies a = 0, and symmetric as the
field is Z,.

e Then (P",w) is a symplectic vector space.

e [t is convenient to play a little fast and loose with signs,
though a more exacting treatment is possible.



The Clifford group

e The Clifford group is sometimes defined as the group of
unitaries U that normalise the Pauli group P", namely for
any P, there exists some P, such that UP,UT = P, but
this has infinite centre with phases e®.

e Instead define the Clifford group C" as the group
generated by the Hadamard, phase, and controlled-X
gates, written H;, S;, and C;(X;), for control qubits ¢ and
target qubits j # 7, where

1 0 00
I 1 1 10 01 00
Hl_ﬁL —1}’51_{0 @} QX =15 9 0 1|
0010
e This yields 8 phases (1), where n = /i = (1 +1)/v/2.



Symplectic representation of the Clifford group

e The Clifford quotient group C* = C"/(n,P") is
isomorphic to the symplectic group Sp(2n,Z,), linear
transformations on Z3" that preserve w, that is, for all
M € C"and a,b € P", w(Ma, Mb) = w(a,b).

e This symplectic representation of the Clifford group
enables efficient simulation of stabiliser circuits with
Clifford gates and computational basis measurements.

e Track states by their stabiliser group S C P™ such that
w(a,b) =0 for all a,b € S.

o A state |¢) is stabilised by S if P,|¢) = |[¢) for all P, € S,
and uniquely specified by S if it is mazimal, or
n-dimensional.



Pauli channels

e Model noise with a Pauli channel, which can be written
E(p) = Z PaPupP,.
aEPn
e Learn &£ by estimating the 4" Pauli error probabilities p,
that form a probability distribution over Pauli errors.

e The Pauli operators are the eigenvectors of &£

E(Py) = ) PaFPaPoPa = < > (—1)w<a7b>pa> Py = AP,

agpn acpn

e The Pauli channel eigenvalues \p are related to the error
probabilities p, by a Walsh-Hadamard transform ordered
by w, and more convenient to estimate.



Pauli channel estimation

e Consider the eigenbasis [¢)2) of P,, sign configurations of
tensor products of single-qubit Pauli eigenstates indexed
by the length n bit string s.

e Let s be the parity of s, then P,|¢%) = (—1)°|%).

e Suppose we prepare eigenstates [%) of P, uniformly at
random, apply £ m times, and measure the expectation
value of P,, then

(1) tr (PaE™ (W) (WED) = o tr (PaE™(Pa) = AT

1
on
SELy

e This directly estimates A\’ and is the fundamental
strategy underlying Pauli channel estimation techniques.



Pauli twirling

e Consider the Pauli twirl of a quantum channel L,
P i i
c 4HZZ (PaLiP})p(PaLiPl)".
acP” k
e Express L, in terms of P, with real coefficients [, as
1
Lk = 2_n Z tr (Png)Pb == Z lkab.
bepr bepn

e Calculate to find £F"(p) is a Pauli channel with Pauli
error probabilities

Po = leb'
k

e Hence Pauli frame randomisation and the randomised
compiling protocol tailor quantum noise into Pauli noise.



Symplectic vector spaces

e Introduce stabiliser codes by first sketching results about
symplectic vector spaces.

e Let V be a 2n-dimensional vector space over the field F',
and let w: V x V — F be a symplectic bilinear form.

e The symplectic complement of a subspace W C V is
W ={veV:Vwe W w(,w) =0}

e Then W is isotropic it W C W%, coisotropic if W¥ C W,
and Lagrangian it W = W*«.

e The symplectic complement is the centraliser C'(S) of a
subspace S C P, stabiliser groups are isotropic, and
maximal stabiliser groups are Lagrangian.
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The rank-nullity theorem

e The dual map ¢: V — V* acts as ¢p(v)w = w(w,v).

e For any subspace W C V, consider ¢"): V — W*, where
M) (v)w = w(w,v) for all w € W.

e Since ") is surjective with kernel W, the rank-nullity
theorem yields

dim W +dim W* = dim V = 2n.

e This implies W« = W, so W is isotropic if and only if
W« is coisotropic.

e Also isotropic subspaces have dimension at most n, and
Lagrangian subspaces have dimension exactly n.
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Symplectic bases

e Consider the basis {uy,...,u,} of a Lagrangian subspace
L.
e This can be extended with {vq,...,v,} to obtain a

symplectic basis for V with commutation properties
w(ug, uj) =w(v,v;) =0, w(u,v;) =08, Vi,j€ [n]

e This follows from a symplectic Gram-Schmidt procedure,
though the v; are not unique.

e [t is more efficient for stabiliser circuit simulations to
track the entire symplectic basis.

e The u; and v; are called stabiliser and destabiliser
generators, respectively.
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Symplectic reductions

e Let W C V be a coisotropic subspace and consider
W = W/W*%, the symplectic reduction of V by W.

e Then w([v], [w]) = w(v,w) is a well-defined symplectic

form on W, where [w] = w + W* € W.

e Hence (W,®) is a symplectic vector space whose
symplectic form @ is inherited from w on V.

e Also, let L C W be a Lagrangian subspace of V, then
L = L/W*¥ is a Lagrangian subspace of W.

e Stabiliser codes are symplectic reductions of the Pauli
group, which behave like smaller, redundantly encoded
Pauli groups whose elements are the logical operators.
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Stabiliser codes

o A stabiliser code encoding k logical qubits in n physical
qubits is defined by a generating set {si,...,s,} for a
maximal stabiliser group, extended to a symplectic basis

by {ri,...,mn}.
e S=(s1,...,8, k) is generated by n — k stabiliser
generators.

© Ls= {8y ki1, -,8n) = (Z1,...,Z) is generated by k
logical stabiliser generators.

e R=(ry,...,r, ) is generated by n — k destabiliser
generators.

© Lp=(Pp_ps1,..., ) = (X1,..., X}) is generated by k
logical destabiliser generators.
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Stabiliser code distance

e Define the logical group L = Lg @& Lr and partition the
Pauli group as

P"=S®L®R.

e Then any a € P” can be written as a = as + a;, + ap for
as € S,a; € L,and ai € R.

e Also C(S) =S5 ® L, and logical operators are elements of
the symplectic reduction C'(S)/S = L.

e The distance of the code is the minimum weight
non-trivial logical operator

d= min |al.
aeC(S)\S
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Stabiliser codes under noise

e Suppose the n physical qubits are acted on by a Pauli
channel £ and some physical error e € P occurs, where
e=egter+eg.

e Measure the stabiliser generators s; for j € [n — k| with
outcomes (—1)% for s; € Zy, giving the error syndrome
er =871+ + Sp_ikTnr € R.

e Given & and eg, the problem of decoding the code is
finding a recovery operator f € P™ such that f = e+ s’
for some s’ € S.

e [f the decoder succeeds, applying f corrects any logical
errors, else the logical error specified by e + f occurs.
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Quantum error correction conditions

e The quantum error correction conditions on the error set
E C P™ guarantee decoding success.

e For any error e € E, choose any recovery operator f € F
with appropriate error syndrome frp = eg, then
e+ f=s+1forsomes € Sandl € L.

e Decoding succeeds if I’ = 0, which is ensured by

e+ f¢&C(S)\S.

e This implies decoding always succeeds if errors in E have
weight at most | (d — 1)/2].
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Decoding strategies

e Mazximum-likelihood decoding chooses the f € ' +r + S
with most probable I € L according to £ given r € R,
that is,

' = :
arg %?L{ Z Pt+m+r
es
o Minimum-weight decoding chooses the most probable
s +1U' € S® L according to £ given r € R, that is,
"+l = :
'+l =arg Wax primir
e Decoder performance relies on knowledge of £.
e We show that calibrating this decoder prior improves

decoding performance.
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The circuit-level picture of
quantum error correction
and fault tolerance




The ‘circuit-forward’ approach

e Google has demonstrated the surface code with many
different syndrome extraction circuits.!

e [ claim this reflects an emerging ‘circuit-forward” paradigm
focusing on the actual circuits run on the quantum device.

e This contrasts with a ‘code-forward’ paradigm that
regards the design of quantum error correction circuits
more as an implementation detail.

e Under the ‘circuit-forward’ paradigm, it becomes natural
to co-design quantum error correcting codes, decoders,
fault-tolerant circuits, and quantum devices.

1Google Quantum AI. Demonstrating dynamic surface codes. arXiv:2412.14360.
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Open-source tools

e The ‘circuit-forward’ paradigm is powered by open-source
packages such as Stim and PyMatching by Craig Gidney
and Oscar Higgott—perhaps not coincidentally at Google.

e These enable stabiliser circuit simulation and decoding of
quantum error correction circuits, respectively.

e But both simulation and decoding must be informed by a
circuit-level Pauli noise model!

e My open-source package QuantumACES.jl enables the
estimation of circuit-level Pauli noise at scale, which can
inform simulation and decoding.

e This talk focuses on the latter.
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The detector formalism

e Stim frames quantum error correction in terms of
detectors, parities of measurement outcomes in a quantum
error correction circuit that are deterministic absent noise.

e Also, logical observables are parities of measurement
outcomes that correspond to logical Pauli operators.

e Errors flip detectors and logical observables.

e Given a circuit-level Pauli noise model, Stim constructs a
detector error model describing the error probabilities of all
possible combinations of detectors and logical observables.

e PyMatching uses the detector error model to decode the
logical observables given the outcomes of the detectors.
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Memory experiments

e Consider a Z (X) memory experiment.

e In the first round of syndrome extraction, the detectors are
the Z-type (X-type) stabiliser measure qubit outcomes.

e In subsequent rounds, the detectors are both the Z- and
X-type stabiliser measure qubit outcomes.

e In the final round, the detectors are parities of the Z-type
(X-type) stabiliser measure qubit outcomes alongside the
associated data qubit outcomes.

e The logical observable is the parity of data qubits in any
logical Z (X) operator.
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Noise-aware decoding




Calibrating decoders

e We use averaged circuit eigenvalue sampling (ACES) to
characterise circuit-level Pauli noise in surface code
syndrome extraction circuits,? implemented with

QuantumACES.jl.

e Calibrating the PyMatching detector error model with
ACES noise estimates enables noise-aware decoding.

e Below threshold, the logical error per round is
approximately € oc A=%/2.

e Noise-aware decoding increases the error suppression
factor A, exponentially reducing logical error rates.

2Hockings7 Doherty, Harper. Scalable noise characterization of syndrome-extraction

circuits with averaged circuit eigenvalue sampling. PRX Quantum 6, 010334, 2025.
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Noise-aware decoding
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Noise-aware decoding at scale

e Trends are consistent with memory results at distance 25.

Decoder performance for memory experiments with 25 rounds, dividing
107 shots evenly between Z and X memory types. Diagonal elements
count decoding failures for each prior. Off-diagonal elements count the
number of shots where the decoder for the row succeeded and the

decoder for the column failed.

Fail. \_Fail. | True | ACES:10” | ACES:10° | Depolarising

Succ.

True 5507 227 619 3005
ACES:107 195 5539 564 2997
ACES:10° 495 472 5631 2994

Depolarising | 1314 1338 1427 7198
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Conclusions

e Noise-aware decoding can substantially reduce logical
error rates and qubit overheads, with improvements that
increase exponentially with scale.

e ACES noise estimates enable near-optimal decoding
compared to calibration with the true noise model.

e In superconducting quantum computers, decoders could
be calibrated with ACES experiments performed and
processed in seconds!

e Now working to implement these methods on real
quantum devices.
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